If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1-50x^2=0
a = -50; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-50)·1
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{2}}{2*-50}=\frac{0-10\sqrt{2}}{-100} =-\frac{10\sqrt{2}}{-100} =-\frac{\sqrt{2}}{-10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{2}}{2*-50}=\frac{0+10\sqrt{2}}{-100} =\frac{10\sqrt{2}}{-100} =\frac{\sqrt{2}}{-10} $
| 2x+3x+3=-2+4 | | -5+x/3=4 | | j+17=79 | | 12x+14+32x+9+19x-2=180 | | 2(x+8)+30=6x-18 | | 12=4x3 | | -18-8n=6 | | 17-4x=53 | | 8+|x+3=18 | | x+1.75=15.75 | | p/7-3=3 | | 8-0.25x=12-0.5x | | 4(x+5)+3(2x+10)=100 | | -3/7m=6 | | f+2=79 | | 13w+8+12w=26 | | 18=u-3/3 | | 180=16x3x | | .3x–6=-12 | | 12x+14+32x+9=19x-2 | | –5z=–7z+10 | | -12m+4m=5+9=8m-13m-7 | | 8x-2x-30=24 | | 1.75x=15.75 | | −1−x/2;x=3 | | |3x|=|-x-1| | | F(x)=2+x | | 2/3x+23=5 | | 5/7x+1/5=96 | | 12w=360 | | y=-7(-9/19)+1 | | 5(-2x-5)=-(x-2) |